Small-scale anhydrous plants could also offer farmers a chance to own or invest in the production capacity for one of their primary crop inputs, says Riley Maanum, research director for the Minnesota Corn Growers Association, which helped fund the wind-to-ammonia project.

An efficient infrastructure for handling and distributing ammonia – from pipelines to storage and load-out facilities to the regulatory framework – already exists. And because electricity prices are less erratic than natural-gas prices, Maanum adds, electrochemical ammonia production could offer a more stable and predictable N fertilizer price for farmers.

The biggest hurdlewill be cost.“If we can achieve the methods to produce ammonia from wind at a cost that’s competitive, it would be fantastic for Midwest farmers,” says Roger Imdieke, who raises corn, soybeans and dairy heifers in central Minnesota. Although renewables are appealing to farmers, “When it comes down to it, they will make their decisions based on the bottom line.”

Gross margins for ammonia production from natural gas have risen sharply in the past decade, due to strong fertilizer demand, says University of Minnesota Extension Economist Doug Tiffany.

However, electrochemical ammonia manufacturing has high capital costs, WCROC’s Reese says, a disadvantage for small-scale plants. It takes more energy, too – roughly one-third more than making fertilizer in a new, efficient natural-gas steam methane reform plant.

Still, tapping the excess electricity now produced by Midwest wind farms could lower production costs enough to make electrochemical processing competitive, says Tiffany, an expert on renewable-energy economics.

You’ve probably seen idle wind turbines that aren’t turning on windy days, and wondered why. It’s because “at that time, there’s no demand for the electricity,” so power production must be curtailed, Tiffany says. “This is cheap power – if we could find something useful to do with it. Ammonia might be it.”

And if natural-gas prices balloon, or the nation decides to tax greenhouse-gas emissions, wind power becomes “a clear price leader,” Reese adds.

It may be feasible to harness other local renewable power sources, too, says Norm Olson, alternative fuels program manager at the Iowa Energy Center, which is investigating the production of ammonia from biomass. Just half a ton of gasified corn stover produces an acre’s worth of anhydrous ammonia, he says. “Farmers know the value of corn stalks, so they could fix their ammonia costs from now until they retire.”

Anaerobic digestion of manure and ag residues, which is becoming more common in large dairy operations, is another alternative power source, Olson says. “Ammonia is one of the highest-value materials you can produce from anaerobic digestion.”


Locally made ammonia could have important advantages over imported fertilizer.

It wouldn’t need to be shipped very far, says Brian Kruize, manager of the Morris Co-op Association, a large farm-supply and agronomy cooperative. “Anhydrous comes to west-central Minnesota by rail,” Kruize notes. “And if the railroad decides not to handle anhydrous anymore, as they’ve been talking about for 10 years, we won’t be able to get it.”

Beyond that, says economist Tiffany, renewable N fertilizer would slash corn’s carbon footprint by more than half. “I believe all of agriculture will be measured on this standard in the future,” he says. “Whether meat, milk, eggs or ethanol are made from corn, the carbon footprint of the products will be reduced. That could be a real competitive advantage in future years.”