It took nearly 20 years for researchers to develop the first commercial genetically enhanced corn hybrids. The next generation of genetic technology may be developed in less than half that time.

“Mini-chromosome stacking” uses the plant’s DNA to simultaneously introduce multiple genetic traits into plants, reducing the time and cost required to develop and launch new products. The technology has several advantages over current genetic technology, says Nathan Fields, the National Corn Growers Association (NCGA) director of research and business development.

“There’s no interference with the plant’s native genome, so the new traits can be delivered more precisely, with increased ability to regulate trait expression,” explains Fields. “Also, the technique makes it easier to identify a genetically modified trait.”

The mini-chromosome technology was developed at the University of Chicago. Chromatin is the exclusive licensee. Earlier this year, it was awarded a patent granting it exclusive rights for the mini-chromosome technology in plants. NCGA has been working with Chromatin to help develop the technology for agriculture and made an investment in the company in 2004.

Recently Monsanto signed a non-exclusive agreement to use the technology in corn and other crops. Monsanto and Chromatin will conduct a three-year program to complete development of the technology.

Chromatin estimates that mini-chromosome technology could accelerate the timeline from research to commercial introduction for plants modified with a single trait by two to three years (25-40%). “The technology offers the chance for more reliable trait development because the new traits would be separate,” says Fields. “For the same reason, researchers may be able to speed up the development and introduction of new traits.”